Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process

نویسندگان

  • Rui Yatabe
  • Junpei Noda
  • Yusuke Tahara
  • Yoshinobu Naito
  • Hidekazu Ikezaki
  • Kiyoshi Toko
چکیده

It is possible to evaluate the taste of foods or medicines using a taste sensor. The taste sensor converts information on taste into an electrical signal using several lipid/polymer membranes. A lipid/polymer membrane for bitterness sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG), which is called "preconditioning". However, we have not yet analyzed the change in the surface structure of the membrane as a result of preconditioning. Thus, we analyzed the change in the surface by performing contact angle and surface zeta potential measurements, Fourier transform infrared spectroscopy (FTIR), X-ray photon spectroscopy (XPS) and gas cluster ion beam time-of-flight secondary ion mass spectrometry (GCIB-TOF-SIMS). After preconditioning, the concentrations of MSG and tetradodecylammonium bromide (TDAB), contained in the lipid membrane were found to be higher in the surface region than in the bulk region. The effect of preconditioning was revealed by the above analysis methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research on the Changes to the Lipid/Polymer Membrane Used in the Acidic Bitterness Sensor Caused by Preconditioning

A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA) measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG) solution, called "MSG preconditioning". Ho...

متن کامل

Improved Durability and Sensitivity of Bitterness-Sensing Membrane for Medicines

This paper reports the improvement of a bitterness sensor based on a lipid polymer membrane consisting of phosphoric acid di-n-decyl ester (PADE) as a lipid and bis(1-butylpentyl) adipate (BBPA) and tributyl o-acetylcitrate (TBAC) as plasticizers. Although the commercialized bitterness sensor (BT0) has high sensitivity and selectivity to the bitterness of medicines, the sensor response graduall...

متن کامل

Prediction of the Effect of Polymer Membrane Composition in a Dry Air Humidification Process via Neural Network Modeling

Utilization of membrane humidifiers is one of the methods commonly used to humidify reactant gases in polymer electrolyte membrane fuel cells (PEMFC). In this study, polymeric porous membranes with different compositions were prepared to be used in a membrane humidifier module and were employed in a humidification test. Three different neural network models were developed to investigate several...

متن کامل

Design, Modeling, and Construction of a New Tactile Sensor for Measuring Contact-Force

This paper presents the design, modeling, and testing of a flexible tactile sensor and its applications. This sensor is made of polymer materials and can detect the 2D surface texture image and contact-force estimation. The sensing mechanism is based on the novel contact deflection effect of a membrane. We measure the deflection of the membrane with measuring the strain in the membrane with emb...

متن کامل

Study of the Relationship between Taste Sensor Response and the Amount of Epigallocatechin Gallate Adsorbed Onto a Lipid-Polymer Membrane

A taste sensor using lipid-polymer membranes has been developed to evaluate the taste of foods, beverages and medicines. The response of the taste sensor, measured as a change in the membrane potential caused by adsorption (CPA), corresponds to the aftertaste felt by humans. The relationships between the CPA value and the amount of adsorbed taste substances, quinine and iso-α acid (bitterness),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015